Tetrahedron Letters, Vol. 30, No. 52, pp 7439-7440, 1989 Printed in Great Britain 0040-4039/89 \$3.00 + .00 Pergamon Press plc

HYDROLYSIS OF VARIOUS NITRILE COMPOUNDS TO THE AMIDES BY CATALYSIS OF 2-MERCAPTOETHANOL IN A PHOSPHATE BUFFER

Young Bok Lee, Yang Mo Goo*, Youn Young Lee¹ and Jae Keun Lee²

Department of Pharmacy, and ¹Department of Chemistry, Seoul National University, Seoul 151-742 and ²Department of Chemistry, Kyong Pook National University, Taegu, 702-701, Korea

Abstract: α -Aminonitriles, 4-nitrobenzonitrile and 3,5-dinitrobenzonitrile were hydrolyzed exclusively to amides efficiently when they were stirred with 2-mercaptoethanol in a phosphate buffer (pH 7.0), 50 mM).

The active sites of the nitrile group-hydrolyzing enzymes are assumed to be composed of two functional groups^{1,2}. Among many bifunctional compounds examined for the ability of hydrolyzing a nitrile group to the corresponding amide, 2-mercaptoethanol showed the highest catalytic activity on the hydrolysis of α -aminophenylacetonitrile to phenylglycin-amide³. Thus, we have investigated further the catalytic activities of 2-mercaptoethanol on the hydrolysis of other nitrile compounds in a phosphate buffer and want to report the scope and limitation in this communication.

Stirring of nitrile compounds⁴ with 2-mercaptoethanol in a phosphate buffer (50 mM, pH 7.0) at 20°C for 15 h and workup gave amides in good yields as summarized in Table 1⁵. Among nitrile compounds examined by us, benzyl cyanide, benzonitrile, *p*-hydroxybenzonitrile, *p*-cyanoaniline, 2-nitrobenzonitrile and *m*-cyanoaniline were not converted to the corresponding amide or to the acid analog. It seemed that the nitrile group having an α -amino group or those attached to the aromatic ring having an electron withdrawing group were easily hydrolyzed to the amides. 2-Mercaptoethanol seemed to react with nitrile compounds to produce bifunctional group-participated tetrahedral intermediates, decomposition of which might give the imidate analogs which should hydrolyzed to the amides (Scheme 1).

Scheme 1

$$R-C \equiv N + HSCH_{2}CH_{2}OH \xrightarrow{buffer} \begin{pmatrix} {}^{+}NH_{2}CI^{-}\\ R-C-S & OH \end{pmatrix} \longrightarrow \begin{bmatrix} {}^{+}NH_{3}CI^{-}\\ R-C-S & OH \end{pmatrix} \xrightarrow{0} \begin{pmatrix} {}^{+}NH_{3}CI^{-}\\ R-C-S & OH \end{pmatrix} \xrightarrow{0} \begin{pmatrix} {}^{+}NH_{2}CI^{-}\\ R-C-S & OH \end{pmatrix} \xrightarrow{0} \begin{pmatrix} {}^{+}NH$$

Our early proposal² about the active sites of nitrile group-hydrolyzing enzymes seemes to have some meaning. We are currently investigating the detailed mechanism of the mercaptoethanol-catalyzed hydrolysis of nitrile compounds to amides.

Table 1. The amide analogs formed from the corresponding nitriles by shaking with 2-mercaptoethanol in a phosphate buffer (50 mM, pH 7.0)⁵

Amide	Yield(%) & mp(°C)	Amide	Yield(%) & mp(°C)
⁺ №H ₃ C1 ⁻ () - СН-СОNН ₂	70.0	210(dec)	⁺ NH ₃ C1 ⁻ сн ₃ сн ₂ сн ₂ сн-солн ₂	61.3	231-233(dec)
⁺ ин ₃ с1 ⁻ с1-сн-соин ₂	85.3	224-226(dec)	⁺ ทุн ₃ с] ⁻ (сн ₃) ₂ сн-сн-солн ₂	56.1	231-234(dec)
⁺ NH ₃ C1 ⁻ с1-@-сн-солн ₂	58.4	214-215(dec)	⁺ NH ₃ C1 ⁻ сн ₃ сн ₂ сн-сомн ₂	67.7	178-181(dec)
⁺ №н ₃ с1 ⁻ но-©-сн-сомн ₂	65.4	215-218(dec)	ClH ₂ N [±] n-Butyl	27.4	212(dec)
⁺ мн ₃ с1 ⁻ сн ₃ о-©-сн-сомн ₂	52.4	225-229(dec)	0 ₂ n-@-conh ₂	78.5	197
⁺ мн ₃ с1 ⁻ (сн ₃) ₂ с-сомн ₂	58.8	254-256(dec)	⁰² 02 ^N 02 ^N -сонн ₂	86.5	179-181

Acknowledgement: Financial support for this research from the Korea Science and Engineering Foundation is sincerely acknowledged.

References and Notes

- 1. Y.B. Lee, M.S. Thesis, Seoul National University, 1986.
- 2. Y.M. Goo and Y.B. Lee, J. Chem. Soc., Chem. Commun., 1247 (1986).
- 3. Y.B. Lee, Y.M. Goo and J.K. Lee, Archi. Pharm. Res., 11, 285 (1988).
- 4. a -Aminonitriles were prepared by the procedures given in the following references.
 R.E. Steiger, Org. Synth., 1955, Coll. Vol. <u>III</u>, 84; W.L. Matier, D.A. Owens,
 W.T. Comer, D. Deitchman, H.C. Ferguson, R.J. Seidehamel and J.R. Young, J. Med. Chem., <u>16</u>, 901 (1973).
- 5. Satisfactory analytical data were obtained.

(Received in Japan 19 August 1989)

7440